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Example of ecological dataset/questions

Why do we need model selection ?

Basic use and theory about AIC (+ AICc, QAIC, QAICc)

Classical approach for model selection

Estimate model selection uncertainty and 
weight of evidence for each model

Classify the explanatory variables by order of importance

Inference from multiple models : model averaging

Some problems / questions ...

OutlineOutlineOutlineOutline
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What is the weight of evidence of different competing hypothesis ?

Typical questions / datasets in ecologyTypical questions / datasets in ecologyTypical questions / datasets in ecologyTypical questions / datasets in ecology

Which variables "explain" the best a system / 
are the most important for prediction ?

Observative studies or experimental studies
A few a priori competing hypothesis about a system

Generally observative - not experimental studies
Complex system with many potential explanatory variables

Ecologists want generally explanatory models not prediction only

where AIC methods are particularly useful
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What is the weight of evidence of different competing hypothesis ?
An example with predator-prey interactions

Typical questions / datasets in ecologyTypical questions / datasets in ecologyTypical questions / datasets in ecologyTypical questions / datasets in ecology

Asiatic ladybird Other ladybird
asymetric

"Intra-Guild Predation"

Prey (aphids)
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General hypothesis : 
The Asiatic ladybirds will prefer eating aphids if possible and 
will eat native ladybirds (=IGP) only if they have no alternative

Typical questions / datasets in ecologyTypical questions / datasets in ecologyTypical questions / datasets in ecologyTypical questions / datasets in ecology

More precise hypothesis : 
IGP increases when : 

H1 : the number of aphids decreases
H2 : the number of native ladybirds increases

H3 : the total number of ladybirds increases relative to the aphids
 

What is the weight of evidence of different competing hypothesis ?
An example with predator-prey interactions



  6

Typical questions / datasets in ecologyTypical questions / datasets in ecologyTypical questions / datasets in ecologyTypical questions / datasets in ecology

In the field (~30 sites), measure :
 

Frequency of IGP 
(=proportion of larvae with alkaloids from other species in their body)

= dependent variable

Abundance of aphids
Abundance of native ladybirds

Abundance of all ladybirds

What is the weight of evidence of different competing hypothesis ?
An example with predator-prey interactions



  7

Typical questions / datasets in ecologyTypical questions / datasets in ecologyTypical questions / datasets in ecologyTypical questions / datasets in ecology

→ translation of the different hypothesis in (binomial) models

mod1 <- IGP ~ native 
mod2 <- IGP ~ aphids + ladybirdsTot, 
mod3 <- IGP ~ native + aphids + native:aphids
mod4 <- IGP ~ aphids + ladybirdsTot + aphids:ladybirdsTot
mod5 <- IGP ~ native + aphids + ladybirdsTot + native:aphids + aphids:ladybirdsTot
mod6 <- IGP ~ native + aphids + ladybirdsTot
mod7 <- IGP ~ aphids + native
mod8 <- IGP ~ aphids

What is the weight of evidence of different competing hypothesis ?
An example with predator-prey interactions

The models don't need to be nested or have similar additive structure. 
You may want to compare directly mod1 and mod8

This is not possible with classical model comparison procedures 
(ie likelihood ratio test, F tests)

Model fit statistics (RMSE, RSS, R²) are unfair 
if the number of parameters is unequal
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Typical case in ecology : 

Why is a species present or absent at a particular place ?

- Often : observative (not experimental) studies
- High level of complexity (many potential explanatory variables)

BUT

- Ecologists generally want explanatory models not prediction only

Typical questions / datasets in ecologyTypical questions / datasets in ecologyTypical questions / datasets in ecologyTypical questions / datasets in ecology

Which variables "explain" the best a system / 
are the most important for prediction ?
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Typical questions / datasets in ecologyTypical questions / datasets in ecologyTypical questions / datasets in ecologyTypical questions / datasets in ecology

Ex : which parameters explain the best the presence/absence of 
some bats species in subterranean cavities in winter ?

Landscape around the cavity :

- distance to the closest river
- number of other cavities

- hedges 
- urban areas

- fields
- grassland
-orchards

- rivers
- lakes

- seminatural biotopes

Cavity characteristics :
 

- length (log scale)
- height (log scale)
- presence of water

- humidity on the walls
- temperature
- hygrometry

- level of disturbance

→ Prediction ie for protection purposes
→ Understanding ie : Why are there no bats in this kind of caves ?
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Typical questions / datasets in ecologyTypical questions / datasets in ecologyTypical questions / datasets in ecologyTypical questions / datasets in ecology

Ex : which parameters explain the best the presence/absence of 
some bats species in subterranean cavities in winter ?

glm(formula = M.myotis ~ urban + fields + orchards + grasslands + deciduous + 
seminatural + rivers + lakes + nb_cavities + dist_river + lin_hedges + wall_humidity + 
water + logdevl + disturbance + logheight + tempmean + hygromean, family = binomial, 
    data = data, subset = nbwinters > nbwinterslim)

Coefficients:
                     Estimate Std. Error z value Pr(>|z|)   
(Intercept)          -3.04187    0.99546  -3.056  0.00225 **
urban                -1.42223    0.62316  -2.282  0.02247 * 
fields               -2.18103    0.87334  -2.497  0.01251 * 
orchards             -0.22955    0.41618  -0.552  0.58124   
grasslands            0.32507    0.54315   0.598  0.54952   
deciduous             0.09538    0.56314   0.169  0.86551   
seminatural          -0.48839    0.47160  -1.036  0.30038   
rivers                0.01644    0.45267   0.036  0.97102   
lakes                -0.57397    1.61835  -0.355  0.72284   
nb_cavities           0.40285    0.29105   1.384  0.16632   
dist_river            0.54126    0.38111   1.420  0.15555   
lin_hedges           -0.28011    0.41052  -0.682  0.49503   
wall_humidity1       -0.15731    0.90433  -0.174  0.86190   
water1                1.79517    0.89592   2.004  0.04510 * 
logdevl               0.30211    0.46528   0.649  0.51614   
disturbancedisturbed  2.82895    1.09409   2.586  0.00972 **
disturbancequiet      0.05182    0.87223   0.059  0.95263   
logheight             1.09343    0.41269   2.650  0.00806 **
tempmean             -0.20136    0.36082  -0.558  0.57679   
hygromean             0.95243    0.64822   1.469  0.14175   
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Why do we need model selection ?Why do we need model selection ?Why do we need model selection ?Why do we need model selection ?

Trade-off : underfitting vs overfitting

Model that do not describe correctly the data
vs

Model that is too close to the data 
(prediction cannot be generalized to the population)

"Finding the best approximating model" 

Unbiased parameters 
poorly estimated

Biased parameters 
estimated with 
high precision



  12

Why do we need model selection ?Why do we need model selection ?Why do we need model selection ?Why do we need model selection ?

Trade-off : underfitting vs overfitting
"Finding the best approximating model" 

x <- seq(0, 1, 0.05)
y <- exp((x-0.3)^2) - 1 + rnorm(21, 0, 0.1)

Y ~ x + x² + x³ + x⁴Y ~ x + x²Y ~ x

Too few parameters
Biased but estimated with 

high precision

Too many parameters
Unbiased but poorly estimated
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Information Criterion approach with AICInformation Criterion approach with AICInformation Criterion approach with AICInformation Criterion approach with AIC

Solutions presented in the books of Burnham & Anderson
Classical AIC + much more

Development of tools for easy implementation of these methods : 
SAS (N. Schtickzelle - UCL) & R (myself : model.select)



  14

Information Criterion approach with AICInformation Criterion approach with AICInformation Criterion approach with AICInformation Criterion approach with AIC

Development of tools for easy implementation of these methods : 
SAS (N. Schtickzelle - UCL) & R (myself : model.select)

Today : at least 2 R packages to do this : MuMin + AICcmodavg

These packages are much more general 
(applicable to more models types)

model.select has been developed to be used with 
lm, glm, lme and (g)lmer models only.

It seems to be reliable for these few target cases
It is more rapid (~3 times) and much less RAM demanding relative to 

MuMin (comparison made in 2011)

look here for a comparison (in french) of MuMin & model.slect:
http://forums.cirad.fr/logiciel-R/viewtopic.php?t=3517
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Basic AIC use and theoryBasic AIC use and theoryBasic AIC use and theoryBasic AIC use and theory

Kullback-Leibler distance : quantity of information lost 
when you approximate full reality (f) by a model (g)

AIC (Aikaike Information Criterion) : 
asymptotically unbiased predictor of the relative expected K-L distance 

based on the maximized log-likelihood 

AIC = -2 log ( Lik (theta.hat | y)) + 2K

→ best approximating model
= Model minimizing K-L distance

= model with lowest AIC relative to other models

Nbr of parametersMaximized Likelihood
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Basic AIC use and theoryBasic AIC use and theoryBasic AIC use and theoryBasic AIC use and theory

AIC = -2 log ( Lik (theta.hat | y)) + 2K

The AIC is also often presented as a measure of the
fit quality of a model (likelihood) penalized by the 

complexity of the model (2K : number of parameters)

Nbr of parameters
= complexityNB : Likelihood  = 

probability of the parameters theta.hat 
knowing the data y
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Basic AIC use and theoryBasic AIC use and theoryBasic AIC use and theoryBasic AIC use and theory

Difference of philosophy between AIC and BIC 
(Bayesian Information Criterion)

AIC = -2  LogLik + 2K
Full reality is a model with an infinite number of explanatory variables

with tapering effects
You want to estimate how much information you lose when you 

approximate this with a finite model

BIC = -2  LogLik + K log(n)
Full reality is a model with a finite number of explanatory variables

You look for this "true model" within the set of models you are 
comparing 

→ more penalty on the number of parameters
→ smaller more parsimonious models
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Basic AIC use and theoryBasic AIC use and theoryBasic AIC use and theoryBasic AIC use and theory

Other AIC related criterion

AIC = -2 log ( MaxLikelihood ) + 2K

Always use this one

Standard AIC

AICc = AIC + (2K(K+1) / (n-K-1))

AIC for small sample size (n) relative to the nbr of parameters (K)

QAIC = -2 log ( MaxLikelihood / c.hat ) + 2K

AIC for overdispersed models

QAICc = QAIC+ (2K(K+1) / (n-K-1))

c.hat is the overdispersion parameter 
estimated by the residual deviance / residual df

or via Pearson residuals
K = nbr of parameters + 1 !
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Basic AIC use and theoryBasic AIC use and theoryBasic AIC use and theoryBasic AIC use and theory

In R (Q)AICc generally not provided but easy to compute 

aic <- function (model) {
smry <- summary(model)
k <- attr(logLik(model),"df")
c <- overdisp(model)[1] # based on Pearson residuals
if(length(c)!=0) {if((c)<1 ) c<-1}
n <- length(fitted(model))
loglik <- as.numeric(logLik(model))
AIC <- (-2*loglik)+ (2*k)
AICc <- (-2*loglik)+ (2*k) + (2*k*(k+1)/(n-k-1))
k <- k+1
QAIC <- -(2*loglik/c)+ (2*k)
QAICc <- QAIC + (2*k*(k+1)/(n-k-1))
(result <- cbind(AIC,AICc,QAIC,QAICc))
}

# With Overdispersion function :

overdisp <- function(mod) {
    k <- attr(logLik(mod),"df") # nb or parametters
    n <- length(fitted(mod)) # nb of observations
    pearsonresid <- (1/(n-k)) * sum(resid(mod,"pearson")^2)
    dev <- deviance(mod)/(n-k)
    result <- c(pearsonresid,dev)
    names(result) <- c("pearsonresid","deviance")
    return(result)
}
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Basic AIC use and theoryBasic AIC use and theoryBasic AIC use and theoryBasic AIC use and theory

AICc and QAICc allow you 
to order the models from the "best" to the "worse" (in K-L sense)

→ only valid relative to the set of considered models
If all models are bad, you will just find the best of the bad models

Do not use models without support from biological knowledge
Include a model with just the intercept

Check the final model fit

→ only valid relative to a given dataset

The y must remain exactly the same between the models
Be careful with NA values in the x

Do not mix y with different scales : eg y, log(y) etc...

When n increases, AIC and AICc values converge
→ always use the small sample versions AICc and QAICc
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Classical approach to model selectionClassical approach to model selectionClassical approach to model selectionClassical approach to model selection

Two approaches are frequently used for model selection/comparison 

1) Sequential Null hypothesis testing

2) Sequential AIC comparisons

= Backward / forward / stepwise selection 
based on a null hypothesis criterion or an AIC criterion



  22

Classical approach to model selectionClassical approach to model selectionClassical approach to model selectionClassical approach to model selection

library(MASS)
data(birthwt)

# tranform some variables into factors
birthwt[,c("race","smoke","ht","ui")] <- 

lapply(birthwt[,c("race","smoke","ht","ui")],factor) 
birthwt$ptd <- factor(birthwt$ptl > 0)

An example with Birthwt dataset from MASS package

Under-weighted newborn childs (yes/no) 

vs mother characteristics :
 

age, weight (lwt), race, smoking habits, 
number of previous premature labours (ptl),

hypertention (ht), uterine irritability (ui),
number of physician visits during the first trimester (ftv).
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Classical approach to model selectionClassical approach to model selectionClassical approach to model selectionClassical approach to model selection

> mod <- glm(low ~ (age + lwt + race + smoke + ptd + ht + ui + ftv),
+ family=binomial, data=birthwt)
> summary(mod) 

Coefficients:
             Estimate Std. Error z value Pr(>|z|)   
(Intercept)  0.644476   1.223889   0.527  0.59849   
age         -0.039548   0.038305  -1.032  0.30186   
lwt         -0.015078   0.007034  -2.143  0.03207 * 
race2        1.218791   0.533168   2.286  0.02226 * 
race3        0.819439   0.450466   1.819  0.06890 . 
smoke1       0.859459   0.409836   2.097  0.03599 * 
ptdTRUE      1.218512   0.463015   2.632  0.00850 **
ht1          1.860429   0.708161   2.627  0.00861 **
ui1          0.719299   0.463419   1.552  0.12062   
ftv          0.050900   0.175456   0.290  0.77174   
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 234.67  on 188  degrees of freedom
Residual deviance: 196.75  on 179  degrees of freedom
AIC: 216.75
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Model selection with Null Hypothesis testing 
> mod <- glm(low ~ (age + lwt + race + smoke + ptd + ht + ui + ftv),

family=binomial, data=birthwt)
> drop1(mod, test="Chisq")

       Df Deviance    AIC    LRT  Pr(Chi)   
<none>      196.75 216.75                   
age     1   197.84 215.84 1.0878 0.296958   
lwt     1   201.83 219.83 5.0832 0.024158 * 
race    2   203.24 219.24 6.4847 0.039071 * 
smoke   1   201.25 219.25 4.4964 0.033966 * 
ptd     1   203.83 221.83 7.0809 0.007791 **
ht      1   204.01 222.01 7.2628 0.007040 **
ui      1   199.12 217.12 2.3660 0.124006   
ftv     1   196.83 214.83 0.0836 0.772449   

> mod <- glm(low ~ (age + lwt + race + smoke + ptd + ht + ui) 
,family=binomial, data=birthwt)
> drop1(mod, test="Chisq")

       Df Deviance    AIC    LRT  Pr(Chi)   
<none>      196.83 214.83                   
age     1   197.85 213.85 1.0179 0.313026   
lwt     1   201.83 217.83 4.9996 0.025353 * 
race    2   203.24 217.24 6.4066 0.040628 * 
smoke   1   201.25 217.25 4.4133 0.035659 * 
ptd     1   203.95 219.95 7.1144 0.007647 **
ht      1   204.01 220.01 7.1793 0.007375 **
ui      1   199.15 215.15 2.3177 0.127909   

We remove the "less significant" 
term for the next step

Classical approach to model selectionClassical approach to model selectionClassical approach to model selectionClassical approach to model selection
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Model selection with Null Hypothesis testing 

> mod <- glm(low ~ (lwt + race + smoke + ptd + ht + ui),family=binomial, 
data=birthwt)
> drop1(mod, test="Chisq")

       Df Deviance    AIC    LRT  Pr(Chi)   
<none>      197.85 213.85                   
lwt     1   203.82 217.82 5.9643 0.014599 * 
race    2   205.47 217.47 7.6142 0.022212 * 
smoke   1   202.57 216.57 4.7150 0.029900 * 
ptd     1   204.22 218.22 6.3651 0.011639 * 
ht      1   205.16 219.16 7.3106 0.006855 **
ui      1   200.48 214.48 2.6307 0.104817   
 

> mod <- glm(low ~ (lwt + race + smoke + ptd + ht),family=binomial, 
data=birthwt)
> drop1(mod, test="Chisq")

       Df Deviance    AIC    LRT  Pr(Chi)   
<none>      200.48 214.48                   
lwt     1   207.16 219.16 6.6824 0.009737 **
race    2   207.96 217.96 7.4731 0.023836 * 
smoke   1   205.40 217.40 4.9149 0.026626 * 
ptd     1   208.25 220.25 7.7652 0.005326 **
ht      1   207.04 219.04 6.5572 0.010446 * 

Final model with only significant 
terms

Classical approach to model selectionClassical approach to model selectionClassical approach to model selectionClassical approach to model selection
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Problems : 

- Final model dependent on the method (backward, forward,...)
- Multiple testing without p-value correction + arbitrary alpha level

- Removing large coefficients because of their large standard error can 
be "bad" (increasing bias)

- ML estimates and standard errors valid only given a model
(conditional standard error)

ie : standard error of the final model underestimated
because they do not take into account model selection process

→ 
Generally strongly discouraged method

Generally OK if you test each effect once
(ie in experimental designs with few explanatory variables relative to the number of data)

Classical approach to model selectionClassical approach to model selectionClassical approach to model selectionClassical approach to model selection
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Inference after model selection

Classical approach to model selectionClassical approach to model selectionClassical approach to model selectionClassical approach to model selection

Best polynomial degree = 3
Determined here with Mallows 

Cp (similar use as AIC)

Example from Efron & Hastie 2016 Computer Age Statistical Inference
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Inference after model selection

Classical approach to model selectionClassical approach to model selectionClassical approach to model selectionClassical approach to model selection

Fixed degree = 3
→ conditional standard error

too narrow !

4000 non parametric bootstrap
cubic polynomial

→ prediction of y for x = -2

"Adaptive degree" 
→ unconditional standard error

broader !

4000 non parametric bootstrap
Select "best" polynomial order
→ prediction of y for x = -2 with 

the "best model"
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> library(MASS)
> stepAIC(mod, direction= "backward")
Start:  AIC=216.75
low ~ (age + lwt + race + smoke + ptd + ht + ui + ftv)

        Df Deviance    AIC
- ftv    1   196.83 214.83
- age    1   197.84 215.84
<none>       196.75 216.75
- ui     1   199.12 217.12
- race   2   203.24 219.24
- smoke  1   201.25 219.25
- lwt    1   201.83 219.83
- ptd    1   203.83 221.83
- ht     1   204.01 222.01

Step:  AIC=214.83
low ~ age + lwt + race + smoke + ptd + ht + ui

        Df Deviance    AIC
- age    1   197.85 213.85
<none>       196.83 214.83
- ui     1   199.15 215.15
- race   2   203.24 217.24
- smoke  1   201.25 217.25
- lwt    1   201.83 217.83
- ptd    1   203.95 219.95
- ht     1   204.01 220.01

Model selection with stepwise AIC procedure 

Classical approach to model selectionClassical approach to model selectionClassical approach to model selectionClassical approach to model selection

If you remove one of these 2 explanatory variables 
from the model the AIC is lower relative to the full 

model with all explanatory variables <none>
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Model selection with stepwise AIC procedure 

Step:  AIC=213.85
low ~ lwt + race + smoke + ptd + ht + ui

        Df Deviance    AIC
<none>       197.85 213.85
- ui     1   200.48 214.48
- smoke  1   202.57 216.57
- race   2   205.47 217.47
- lwt    1   203.82 217.82
- ptd    1   204.22 218.22
- ht     1   205.16 219.16

Call:  glm(formula = low ~ lwt + race + smoke + ptd + ht + ui, family = binomial, 
    data = birthwt)

Coefficients:
(Intercept)          lwt        race2        race3       smoke1      ptdTRUE          
ht1          ui1  
   -0.12533     -0.01592      1.30086      0.85441      0.86658      1.12886      
1.86690      0.75065  

Classical approach to model selectionClassical approach to model selectionClassical approach to model selectionClassical approach to model selection

If you remove any of the explanatory from this 
model, the AIC increases relative to the full model

→ the algorithm stops
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Model selection with stepwise AIC procedure 

> m1 <- glm(low ~ lwt + race + smoke + ptd + ht + ui,
+ family=binomial, data=birthwt)
> summary(m1)

Call:
glm(formula = low ~ lwt + race + smoke + ptd + ht + ui, family = binomial, 
    data = birthwt)

Deviance Residuals: 
    Min       1Q   Median       3Q      Max  
-1.7308  -0.7841  -0.5144   0.9539   2.1980  

Coefficients:
             Estimate Std. Error z value Pr(>|z|)   
(Intercept) -0.125326   0.967561  -0.130  0.89694   
lwt         -0.015918   0.006954  -2.289  0.02207 * 
race2        1.300856   0.528484   2.461  0.01384 * 
race3        0.854414   0.440907   1.938  0.05264 . 
smoke1       0.866582   0.404469   2.143  0.03215 * 
ptdTRUE      1.128857   0.450388   2.506  0.01220 * 
ht1          1.866895   0.707373   2.639  0.00831 **
ui1          0.750649   0.458815   1.636  0.10183   

Classical approach to model selectionClassical approach to model selectionClassical approach to model selectionClassical approach to model selection

Final model
NB : the standard errors and p values are not correct because they still don't take 

into account model selection uncertainty.
It is generally NOT recommended to make inference on the best model without 

standard error adjustments but this is a common practice
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Model selection with stepwise AIC procedure : 
Better than multiple tests and very quick method

Problems : 

- better to use AICc (possible with option k= ??)

- you not always find the best model 
(local optimum, different methods : backward, forward,...)

- model selection uncertainty

                                   model  k   n     AIC AIC.delta
           lwt+ race+ smoke+ ptd+ ht+ ui  8 189 213.852     0.000 
               lwt+ race+ smoke+ ptd+ ht  7 189 214.482     0.631 
      age+ lwt+ race+ smoke+ ptd+ ht+ ui  9 189 214.834     0.982 
          age+ lwt+ race+ smoke+ ptd+ ht  8 189 215.151     1.300 
      lwt+ race+ smoke+ ptd+ ht+ ui+ ftv  9 189 215.838     1.986 
          lwt+ race+ smoke+ ptd+ ht+ ftv  8 189 216.482     2.631 
                  lwt+ race+ ptd+ ht+ ui  7 189 216.567     2.715 
 age+ lwt+ race+ smoke+ ptd+ ht+ ui+ ftv 10 189 216.750     2.899 
     age+ lwt+ race+ smoke+ ptd+ ht+ ftv  9 189 217.116     3.264 
                   age+ lwt+ ptd+ ht+ ui  6 189 217.153     3.302 

AIC.delta = AIC - AICmin

Rule of thumb often used : models with AIC.delta <=2 
are equally supported by the data

Classical approach to model selectionClassical approach to model selectionClassical approach to model selectionClassical approach to model selection

stepAIC found the best 
model in this case but other 
models have very close AIC 

values.
If you resample the data 

(eg with bootstrap) another 
model could have the 

lowest AIC value
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Model selection uncertainty & likelihood of the modelModel selection uncertainty & likelihood of the modelModel selection uncertainty & likelihood of the modelModel selection uncertainty & likelihood of the model

It is easy to estimate the model selection uncertainty 
from the AICc value : 

w
i
 = exp(- 0.5 * AICc.delta

i
)  /  sum(exp(- 0.5 * AICc.delta

i
)

W
i
 = model weight = Aikaike weight

= The probability for model i to be estimated as the 
best K-L model if we resample data
(similar results obtained by bootstrapping)

= Likelihood (model
i
 | data, set of models)

= Weight of evidence in favor of model i / hypothesis i
ie : How much data support this model relative to other models 

w i=
exp (−

1
2

Δi)

∑
r=1

R

exp (−
1
2
Δ i)
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Model selection uncertainty & likelihood of the modelModel selection uncertainty & likelihood of the modelModel selection uncertainty & likelihood of the modelModel selection uncertainty & likelihood of the model

Aikaike weights , AICc.w : 

> source("/home/gilles/stats/model.select_0.4.1.R")
> res <- model.select(mod)

> res$AICtab[1:20,]

                                      model  k   n    AICc AICc.delta AICc.w sum.w
127           lwt+ race+ smoke+ ptd+ ht+ ui  8 189 214.652      0.000  0.104 0.104
63                lwt+ race+ smoke+ ptd+ ht  7 189 215.101      0.449  0.083 0.187
128      age+ lwt+ race+ smoke+ ptd+ ht+ ui  9 189 215.839      1.188  0.057 0.245
64           age+ lwt+ race+ smoke+ ptd+ ht  8 189 215.951      1.300  0.054 0.299
255      lwt+ race+ smoke+ ptd+ ht+ ui+ ftv  9 189 216.843      2.192  0.035 0.334
119                  lwt+ race+ ptd+ ht+ ui  7 189 217.185      2.534  0.029 0.363
191          lwt+ race+ smoke+ ptd+ ht+ ftv  8 189 217.282      2.631  0.028 0.391
116                   age+ lwt+ ptd+ ht+ ui  6 189 217.615      2.963  0.024 0.415
52                        age+ lwt+ ptd+ ht  5 189 217.761      3.110  0.022 0.437
115                        lwt+ ptd+ ht+ ui  5 189 217.840      3.189  0.021 0.458
60                 age+ lwt+ smoke+ ptd+ ht  6 189 217.854      3.203  0.021 0.479
55                       lwt+ race+ ptd+ ht  6 189 217.859      3.207  0.021 0.500
124            age+ lwt+ smoke+ ptd+ ht+ ui  7 189 217.859      3.208  0.021 0.521
123                 lwt+ smoke+ ptd+ ht+ ui  6 189 217.927      3.276  0.020 0.541
256 age+ lwt+ race+ smoke+ ptd+ ht+ ui+ ftv 10 189 217.986      3.334  0.020 0.560
120             age+ lwt+ race+ ptd+ ht+ ui  8 189 218.047      3.395  0.019 0.579
192     age+ lwt+ race+ smoke+ ptd+ ht+ ftv  9 189 218.122      3.470  0.018 0.598
59                      lwt+ smoke+ ptd+ ht  5 189 218.283      3.632  0.017 0.615
51                             lwt+ ptd+ ht  4 189 218.341      3.689  0.016 0.631
56                  age+ lwt+ race+ ptd+ ht  7 189 218.391      3.739  0.016 0.647

+ 236 other models ...

k = number of parameters in the model
n = number of observations : n MUST be equal in all models !

sum.w : 
cumulative sum of 

AICc.w = 1

model.select 
computes 

automatically all 
possible 

sub-models from a 
full model

→ no more 
problems of local 

optimum
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Model selection uncertainty & likelihood of the modelModel selection uncertainty & likelihood of the modelModel selection uncertainty & likelihood of the modelModel selection uncertainty & likelihood of the model

Use of Aikake weights : 

                                      model  k   n    AICc AICc.delta AICc.w sum.w
127           lwt+ race+ smoke+ ptd+ ht+ ui  8 189 214.652      0.000  0.104 0.104
63                lwt+ race+ smoke+ ptd+ ht  7 189 215.101      0.449  0.083 0.187
128      age+ lwt+ race+ smoke+ ptd+ ht+ ui  9 189 215.839      1.188  0.057 0.245
64           age+ lwt+ race+ smoke+ ptd+ ht  8 189 215.951      1.300  0.054 0.299
255      lwt+ race+ smoke+ ptd+ ht+ ui+ ftv  9 189 216.843      2.192  0.035 0.334
(...)

Model 1 has a probability of 0.104 to be selected as the best model
ie : if you collect 1000 new datasets we estimate that model 1 will have the lowest AICc of 

the set of models in 104 cases 

Evidence ratios : 
Model 1 is ~ 3 times more supported by the data than model 5

(w1/w5 = 0.104 / 0.035 = 2.97)
cfr rule of thumb delta AIC <= 2

Confidence set of models
The best K-L model (for this dataset and this set of models)

has a probability of 0.334 to be within the 5 first models (sum.w)
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Model selection uncertainty & likelihood of the modelModel selection uncertainty & likelihood of the modelModel selection uncertainty & likelihood of the modelModel selection uncertainty & likelihood of the model

NB : the more models you have in the set of models, 
the higher the uncertainty → it is generally better to restrict 

the number of models as much as possible

Two main approaches with these AIC methods : 

1) select a restricted number of carefully chosen models 
corresponding to the biological hypotheses you want to 

compare (with AICc weights)

2) Start from one full model with all potentially important 
explanatory variables and compute "all possible  models" 

from the combinations of these explanatory variables.
→ 

generally higher uncertainty but this approach is more 
adapted for the following interesting methods 
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Estimating the relative importance of predictor variablesEstimating the relative importance of predictor variablesEstimating the relative importance of predictor variablesEstimating the relative importance of predictor variables

w+(j) = Sum (wi) of the models in which variable j is present

> source("/home/gilles/stats/R/WorkingDirectory/rprojects/model.select_0.4.R")
> res <- model.select(mod)

> res$AICtab[1:20, c("model","k", "n", "AICc", "AICc.delta", "AICc.w", "sum.w")]

                                      model  k   n    AICc AICc.delta AICc.w sum.w
127           lwt+ race+ smoke+ ptd+ ht+ ui  8 189 214.652      0.000  0.104 0.104
63                lwt+ race+ smoke+ ptd+ ht  7 189 215.101      0.449  0.083 0.187
128      age+ lwt+ race+ smoke+ ptd+ ht+ ui  9 189 215.839      1.188  0.057 0.245
64           age+ lwt+ race+ smoke+ ptd+ ht  8 189 215.951      1.300  0.054 0.299
255      lwt+ race+ smoke+ ptd+ ht+ ui+ ftv  9 189 216.843      2.192  0.035 0.334
119                  lwt+ race+ ptd+ ht+ ui  7 189 217.185      2.534  0.029 0.363
191          lwt+ race+ smoke+ ptd+ ht+ ftv  8 189 217.282      2.631  0.028 0.391
116                   age+ lwt+ ptd+ ht+ ui  6 189 217.615      2.963  0.024 0.415
+ 250 other models ...

> res$var.weights

            freq     w
(Intercept)  1.0 1.000
ptd          0.5 0.950
ht           0.5 0.894
lwt          0.5 0.842
smoke        0.5 0.711
race         0.5 0.711
ui           0.5 0.551
age          0.5 0.445
ftv          0.5 0.257

Interpretation : Probability of variable j to be in the best model if you could collect new data

freq = proportion of models in 
which the parameter is present

Ideally the initial frequency 
should be the same for all  

parameters.
This can be achieved with an "all 

possible models" approach
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We have now nice solutions for several problems : 

If we estimate all possible models
We don't have a risk of local optimum or different final model 

depending on the method used (backward, forward,...)
But this approach has also drawbacks, ie : increased uncertainty in model selection, impossible to do 

with very complex models (many x)...

We have interpretable values providing the degree of support by the 
data of the different models/hypotheses (AICc.w) and of the different 

explanatory variable (w+)

No problem with multiple testing as AIC is a direct measure of model 
quality (in K-L distance term)

Inference from multiple modelsInference from multiple modelsInference from multiple modelsInference from multiple models
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But we still have often several models that are almost equivalently 
supported by the data (delta AIC close to 0). 

Which model should we use (eg for prediction) ?

A common practice is to consider the models with delta AICc < 2 
and use the most parsimonious one 

(ie with the smallest number of parameters).
But by doing this you drop information that could make sense in your 

system and you still have standard errors that do not take into 
account the model selection process (they are conditional to the 

model)

Another solution is to use the information from all models at once 
thanks to model averaging of the coefficients and unconditional 

standard error estimates

Inference from multiple modelsInference from multiple modelsInference from multiple modelsInference from multiple models
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Inference from multiple modelsInference from multiple modelsInference from multiple modelsInference from multiple models

Model averaged coefficients :

                                     model  k   n    AICc AICc.delta AICc.w sum.w
127           lwt+ race+ smoke+ ptd+ ht+ ui  8 189 214.652      0.000  0.104 0.104
63                lwt+ race+ smoke+ ptd+ ht  7 189 215.101      0.449  0.083 0.187
128      age+ lwt+ race+ smoke+ ptd+ ht+ ui  9 189 215.839      1.188  0.057 0.245
64           age+ lwt+ race+ smoke+ ptd+ ht  8 189 215.951      1.300  0.054 0.299
255      lwt+ race+ smoke+ ptd+ ht+ ui+ ftv  9 189 216.843      2.192  0.035 0.334
119                  lwt+ race+ ptd+ ht+ ui  7 189 217.185      2.534  0.029 0.363
191          lwt+ race+ smoke+ ptd+ ht+ ftv  8 189 217.282      2.631  0.028 0.391
116                   age+ lwt+ ptd+ ht+ ui  6 189 217.615      2.963  0.024 0.415
+ 250 other models ...

Unconditional Standard Errors :

Unconditional variance covariance matrix not (yet) implemented

= mean of the coefficient value in all models weighed by the AICc weight of each model.

= standard errors that take into account the model selection uncertainty
ie that are not conditional to the model, but to the set of models considered



  41

Inference from multiple modelsInference from multiple modelsInference from multiple modelsInference from multiple models

Model averaged coefficients & Unconditional Standard Errors

                                     model  k   n    AICc AICc.delta AICc.w sum.w
127           lwt+ race+ smoke+ ptd+ ht+ ui  8 189 214.652      0.000  0.104 0.104
63                lwt+ race+ smoke+ ptd+ ht  7 189 215.101      0.449  0.083 0.187
128      age+ lwt+ race+ smoke+ ptd+ ht+ ui  9 189 215.839      1.188  0.057 0.245
64           age+ lwt+ race+ smoke+ ptd+ ht  8 189 215.951      1.300  0.054 0.299
255      lwt+ race+ smoke+ ptd+ ht+ ui+ ftv  9 189 216.843      2.192  0.035 0.334
119                  lwt+ race+ ptd+ ht+ ui  7 189 217.185      2.534  0.029 0.363
191          lwt+ race+ smoke+ ptd+ ht+ ftv  8 189 217.282      2.631  0.028 0.391
116                   age+ lwt+ ptd+ ht+ ui  6 189 217.615      2.963  0.024 0.415
+ 250 other models ...

 > res$mod.av[, c("freq", "w", "av.coef", "av.se")]
            freq     w av.coef av.se
(Intercept)  1.0 1.000   0.386 1.297
ptdTRUE      0.5 0.950   1.235 0.443
ht1          0.5 0.894   1.587 0.669
lwt          0.5 0.842  -0.013 0.006
race2        0.5 0.711   0.834 0.450
race3        0.5 0.711   0.559 0.365
smoke1       0.5 0.711   0.576 0.340
ui1          0.5 0.551   0.409 0.313
age          0.5 0.445  -0.021 0.021
ftv          0.5 0.257  -0.002 0.045

You can compute an approximate 
unconditionnal 95% confidence interval

with av.coef ± 1.96 * av.se

NB : these se are generally much higher 
than the conditional se

The higher the model selection 
uncertainty, the higher av.se.

→ you should limit the number of 
explanatory variables
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"Shrinkage" model averaging"Normal" model averaging

Use only models in which beta_j is present
Rescale the w_i so that their sum is = 1

Use all models
When beta_j is not present its value is 0

→ estimates shrunk towards 0 for 
parameters present mainly in "bad models"

ie parameters with low w+

There are in fact 2 slightly different way to calculate the averaged coefficients

Inference from multiple modelsInference from multiple modelsInference from multiple modelsInference from multiple models
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"Normal" model averaging : 

- not consistent with averaging of the predictions

- parameters from the same model will be weighed differently 
(don't seem to be a good thing, ie for interactions)

- shrinkage seems to be an interesting property : 
when no shrinkage : a parameter that is only in "bad models" can have a high size effect

→ we prefer shrinkage model averaging (av.coef instead of av.coef2)

> res$mod.av
            freq     w av.coef av.se av.coef2 av.se2
(Intercept)  1.0 1.000   0.386 1.297    0.386  1.297
ptdTRUE      0.5 0.950   1.235 0.443    1.299  0.462
ht1          0.5 0.894   1.587 0.669    1.775  0.724
lwt          0.5 0.842  -0.013 0.006   -0.016  0.007
race2        0.5 0.711   0.834 0.450    1.174  0.538
race3        0.5 0.711   0.559 0.365    0.787  0.464
smoke1       0.5 0.711   0.576 0.340    0.809  0.421
ui1          0.5 0.551   0.409 0.313    0.743  0.460
age          0.5 0.445  -0.021 0.021   -0.048  0.038
ftv          0.5 0.257  -0.002 0.045   -0.010  0.176

shrinkage model 
averaging

normal model 
averaging

the difference is 
higher for poorly 

supported 
variables

av.coef is more 
shrunk toward 0

Inference from multiple modelsInference from multiple modelsInference from multiple modelsInference from multiple models
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ProblemsProblemsProblemsProblems

1) Qaic

2) Application in Mixed models

3) Interpretation with interactions or in case of 
non balanced set of models
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Problems : QAICProblems : QAICProblems : QAICProblems : QAIC

Coefficient of overdispersion estimated from the 
full model and used in all other models

Do not use the coefficient of each model to 
calculate the QAIC !

→ strange ?

→ you need a full model (not always desirable)

What to do with standard errors for model averaging?
→ MuMin package : se taken as it

→ model.select : se errors multiplied by sqrt of overdispersion coefficient 
before model averaging
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Problems : Mixed modelsProblems : Mixed modelsProblems : Mixed modelsProblems : Mixed models

AIC not adapted to compare models with different random structures
(ie because parameters "tested" at the margin)

But frequently used nevertheless in practice (because best available option ?)

→ Compare models with different fixed effects but the same random structure 
Ok if no interest in random effects that are just "nuisance effects"

 !!! use ML, not REML to compare models with different fixed structures !!!

What are the number of parameters
 (K used to calculate AIC)?

If interest only in the fixed effect part : 
ok to consider each random effect (hyper parameter) as 1 parameter

It is possible to avoid the use of QAIC (at least with R lmer package)
Modelise the overdispersion in the random effects (observation level random effect)

See Bolker et al. 2009, TREE & http://glmm.wikidot.com/faq
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Problems : when there is no balanceProblems : when there is no balanceProblems : when there is no balanceProblems : when there is no balance

> mod <- glm(low ~ (age + lwt + smoke + ht  + smoke:lwt + smoke:ht),
+  family=binomial, data=birthwt)
> 
> res <- model.select(mod)

> res$var.weights[,-2]
             freq     w
(Intercept) 1.000 1.000
lwt         0.615 0.964
ht          0.615 0.932
smoke       0.692 0.858
age         0.500 0.389
lwt:smoke   0.231 0.297
smoke:ht    0.231 0.208

If the frequency of the explanatory variables in the initial set of model 
is not the same 

(typically when you include interaction and respect marginality) 
→ you can't  compare the weights of the different parameters ?

Empirical rule of thumb ? : 
explanatory variables with weight > initial frequency are 

important, supported by the data 

If weight < frequency : not supported

If weight ~= frequency : small, borderline , not very well supported 
effects
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Problems : when there is no balanceProblems : when there is no balanceProblems : when there is no balanceProblems : when there is no balance

> mod <- glm(low ~ (age + lwt + smoke + ht  + smoke:lwt + smoke:ht),
+  family=binomial, data=birthwt)
> 
> 
res <- model.select(mod, nsimul=100)

> res$var.weights[,-2]
             freq    p     w
(Intercept) 1.000 1.00 1.000
lwt         0.615 0.00 0.964
ht          0.615 0.01 0.932
smoke       0.692 0.04 0.858
age         0.500 0.32 0.389
lwt:smoke   0.231 0.07 0.297
smoke:ht    0.231 0.08 0.208

Other option : 
Null hypothesis testing based on randomization of the response Y

P value = Probability to obtain a W as high or higher by pure hasard, ie if the 
variable has no explanatory power (ie when the Y are randomized)

(NB : method discussed by Burnham & Anderson)

Implemented in the model.select function but much more computer intensive.
Only for lm and glm.

For mixed models, you must make the randomization yourself and pay attention to 
keep the random structure (e.g. randomize within groups).

p values by 
randomization
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Practical use of Practical use of model.selectmodel.selectPractical use of Practical use of model.selectmodel.select

library(MASS)
data(birthwt)

# tranform some variables into factors
birthwt[,c("race","smoke","ht","ui")] <- 
    lapply(birthwt[,c("race","smoke","ht","ui")],factor) 
birthwt$ptd <- factor(birthwt$ptl > 0)

# compute a binomial model
mod <- glm(low ~ (age + lwt + race + smoke), family=binomial, 
data=birthwt)

An example with Birthwt dataset from MASS package

NB : we will focus here on the use of model.select (options etc...)
The models used are probably crazy here.

NB2 :  model.select_0.3.R has been used and tested during several years without problems. It 
worked well with lm, glm, nlme and lme4 0.999xx

model.select_0.4.R is (was : 2013) a very recent version transformed to be used with lme4 1.0.x
The output structure has slightly been modified

It has not been tested as extensively → be prudent with the results (as always)

Don't hesitate to use the CRAN packages MuMin and AICcmodavg in stead
Comparison model.select - MuMin here :

 http://forums.cirad.fr/logiciel-R/viewtopic.php?t=3517
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Practical use of Practical use of model.selectmodel.selectPractical use of Practical use of model.selectmodel.select

> source("/home/gilles/stats/R/model.select_0.4.R")
> res <- model.select(mod)
> res
$AICtab
                   model id k   n    loglik    AICc AICc.delta AICc.w sum.w
15      lwt+ race+ smoke 15 5 189 -107.5073 225.343      0.000  0.474 0.474
16 age+ lwt+ race+ smoke 16 6 189 -107.2886 227.039      1.696  0.203 0.677
13           race+ smoke 13 4 189 -109.9874 228.192      2.850  0.114 0.791
14      age+ race+ smoke 14 5 189 -109.4311 229.190      3.848  0.069 0.860
(...)
1                         1 1 189 -117.3360 236.693     11.351  0.002 1.000

$var.weights
            freq     w
(Intercept)  1.0 1.000
smoke        0.5 0.938
race         0.5 0.897
lwt          0.5 0.793
age          0.5 0.331

$mod.av
            freq     w av.coef av.se av.coef2 av.se2
(Intercept)  1.0 1.000  -0.156 1.137   -0.156  1.137
smoke1       0.5 0.938   0.973 0.370    1.037  0.388
race3        0.5 0.897   0.869 0.391    0.969  0.423
race2        0.5 0.897   1.093 0.477    1.218  0.517
lwt          0.5 0.793  -0.010 0.005   -0.013  0.006
age          0.5 0.331  -0.009 0.013   -0.028  0.035

First kind of use : all possible models from a full model

shrinkage model 
averaging

normal model 
averaging

variable weights w+

unconditional 
standard errors

AICc table
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Practical use of Practical use of model.selectmodel.selectPractical use of Practical use of model.selectmodel.select

> modlist <- list(
+     mod1 = glm(low ~ age ,family=binomial, data=birthwt),
+     mod2 = glm(low ~ age + lwt ,family=binomial, data=birthwt),
+     mod3 = glm(low ~ age +  lwt + age:lwt,family=binomial, data=birthwt),
+     mod4 = glm(low ~ I(age/sqrt(lwt)) ,family=binomial, data=birthwt),
+     mod5 = glm(low ~ lwt, family=binomial, data=birthwt),
+     mod6 = glm(low ~ 1, family=binomial, data=birthwt)
+ )

> model.select(model = NULL, models.list = modlist)

$AICtab
                 model id k   n    loglik    AICc AICc.delta AICc.w sum.w
mod5               lwt  5 2 189 -114.3453 232.755      0.000  0.408 0.408
mod2          age+ lwt  2 3 189 -113.5617 233.253      0.498  0.318 0.727
mod3 age+ lwt+ age:lwt  3 4 189 -113.5616 235.341      2.585  0.112 0.839
mod1               age  1 2 189 -115.9560 235.976      3.221  0.082 0.921
mod6                    6 1 189 -117.3360 236.693      3.938  0.057 0.978
mod4  I(age/sqrt(lwt))  4 2 189 -117.2468 238.558      5.803  0.022 1.000

Second kind of use : a list of carefully chosen models
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Practical use of Practical use of model.selectmodel.selectPractical use of Practical use of model.selectmodel.select

> model.select(mod,srt = "QAICc")
$AICtab
                   model id k   n    loglik   QAICc QAICc.delta QAICc.w sum.w
15      lwt+ race+ smoke 15 5 189 -107.5073 195.835       0.000   0.384 0.384
16 age+ lwt+ race+ smoke 16 6 189 -107.2886 197.619       1.784   0.157 0.542
13           race+ smoke 13 4 189 -109.9874 197.931       2.096   0.135 0.676
(...)
1                         1 1 189 -117.3360 204.202       8.368   0.006 0.996
6              age+ race  6 4 189 -114.0638 204.884       9.049   0.004 1.000

(...)

$mod.av
            freq     w av.coef av.se av.coef2 av.se2
(Intercept)  1.0 1.000  -0.144 1.242   -0.144  1.242
smoke1       0.5 0.884   0.896 0.389    1.014  0.423
race3        0.5 0.809   0.778 0.403    0.962  0.461
race2        0.5 0.809   0.970 0.487    1.199  0.559
lwt          0.5 0.734  -0.010 0.006   -0.013  0.007
age          0.5 0.332  -0.010 0.014   -0.031  0.037

option srt : choose an other Information Criterion than the default AICc
Possible values = AICc, AIC, QAICc, QAIC
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Practical use of Practical use of model.selectmodel.selectPractical use of Practical use of model.selectmodel.select

> model.select(mod, keep=c("race"))
$AICtab
                  model id k   n    loglik    AICc AICc.delta AICc.w sum.w
7      lwt+ race+ smoke  7 5 189 -107.5073 225.343      0.000  0.528 0.528
8 age+ lwt+ race+ smoke  8 6 189 -107.2886 227.039      1.696  0.226 0.755
5           race+ smoke  5 4 189 -109.9874 228.192      2.850  0.127 0.882
6      age+ race+ smoke  6 5 189 -109.4311 229.190      3.848  0.077 0.959
3             lwt+ race  3 4 189 -111.6295 231.476      6.134  0.025 0.983
4        age+ lwt+ race  4 5 189 -111.3303 232.989      7.646  0.012 0.995
1                  race  1 3 189 -114.8308 235.791     10.449  0.003 0.998
2             age+ race  2 4 189 -114.0638 236.345     11.002  0.002 1.000

$var.weights
            freq     w
(Intercept)  1.0 1.000
race         1.0 1.000
smoke        0.5 0.959
lwt          0.5 0.791
age          0.5 0.317

(...)

option keep : force one explanatory variable to be in all models.
Useful if you want to always control for a covariable
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Practical use of Practical use of model.selectmodel.selectPractical use of Practical use of model.selectmodel.select

> model.select(mod,nvmax = 2)
$AICtab
         model id k   n    loglik    AICc AICc.delta AICc.w sum.w
11 race+ smoke 11 4 189 -109.9874 228.192      0.000  0.526 0.526
10  lwt+ smoke 10 3 189 -112.1703 230.470      2.278  0.168 0.694
7    lwt+ race  7 4 189 -111.6295 231.476      3.284  0.102 0.796
3          lwt  3 2 189 -114.3453 232.755      4.563  0.054 0.850
4     age+ lwt  4 3 189 -113.5617 233.253      5.061  0.042 0.892
9   age+ smoke  9 3 189 -113.6381 233.406      5.214  0.039 0.930
8        smoke  8 2 189 -114.9023 233.869      5.677  0.031 0.961
5         race  5 3 189 -114.8308 235.791      7.599  0.012 0.973
2          age  2 2 189 -115.9560 235.976      7.784  0.011 0.984
6    age+ race  6 4 189 -114.0638 236.345      8.153  0.009 0.993
1               1 1 189 -117.3360 236.693      8.501  0.007 1.000

$var.weights
             freq     w
(Intercept) 1.000 1.000
smoke       0.364 0.764
race        0.364 0.648
lwt         0.364 0.366
age         0.364 0.100

option nvmax : maximum number of variables that you want in the 
models. (avoid to compute overly complex models)
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Practical use of Practical use of model.selectmodel.selectPractical use of Practical use of model.selectmodel.select

> model.select(mod,null.model=FALSE)
$AICtab
                   model id k   n    loglik    AICc AICc.delta AICc.w sum.w
14      lwt+ race+ smoke 14 5 189 -107.5073 225.343      0.000  0.475 0.475
15 age+ lwt+ race+ smoke 15 6 189 -107.2886 227.039      1.696  0.203 0.678
12           race+ smoke 12 4 189 -109.9874 228.192      2.850  0.114 0.792
13      age+ race+ smoke 13 5 189 -109.4311 229.190      3.848  0.069 0.862
10            lwt+ smoke 10 3 189 -112.1703 230.470      5.128  0.037 0.898
11       age+ lwt+ smoke 11 4 189 -111.4397 231.097      5.754  0.027 0.925
6              lwt+ race  6 4 189 -111.6295 231.476      6.134  0.022 0.947
2                    lwt  2 2 189 -114.3453 232.755      7.413  0.012 0.959
7         age+ lwt+ race  7 5 189 -111.3303 232.989      7.646  0.010 0.969
3               age+ lwt  3 3 189 -113.5617 233.253      7.911  0.009 0.978
9             age+ smoke  9 3 189 -113.6381 233.406      8.063  0.008 0.986
8                  smoke  8 2 189 -114.9023 233.869      8.527  0.007 0.993
4                   race  4 3 189 -114.8308 235.791     10.449  0.003 0.996
1                    age  1 2 189 -115.9560 235.976     10.634  0.002 0.998
5              age+ race  5 4 189 -114.0638 236.345     11.002  0.002 1.000

$var.weights
             freq     w
(Intercept) 1.000 1.000
smoke       0.533 0.940
race        0.533 0.899
lwt         0.533 0.795
age         0.533 0.332

option null.model : logical indicating if you want to include a model with 
just the intercept in the set of models (default = TRUE)
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> mod <- glm(low ~ (age + lwt + smoke)^2, family=binomial, data=birthwt)
> model.select(mod,nsimul=100)
$AICtab
                                            model id k   n    loglik    AICc AICc.delta AICc.w sum.w
7                                      lwt+ smoke  7 3 189 -112.1703 230.470      0.000  0.162 0.162
14                          lwt+ smoke+ lwt:smoke 14 4 189 -111.1859 230.589      0.119  0.153 0.315
8                                 age+ lwt+ smoke  8 4 189 -111.4397 231.097      0.626  0.119 0.434
15                     age+ lwt+ smoke+ lwt:smoke 15 5 189 -110.5596 231.447      0.977  0.100 0.534
12                     age+ lwt+ smoke+ age:smoke 12 5 189 -110.8160 231.960      1.489  0.077 0.611
(...)

2                                             age  2 2 189 -115.9560 235.976      5.506  0.010 0.993
1                                                  1 1 189 -117.3360 236.693      6.223  0.007 1.000

$var.weights
             freq nullw    p     w
(Intercept) 1.000 1.000 1.00 1.000
lwt         0.722 0.476 0.05 0.890
smoke       0.722 0.432 0.04 0.876
age         0.722 0.429 0.18 0.596
lwt:smoke   0.278 0.076 0.05 0.358
age:smoke   0.278 0.075 0.14 0.199
age:lwt     0.278 0.083 0.25 0.135

option nsimul : number of permutations in the permutation tests of the 
variables weights (default = 0)
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